本方案基于Anna’s Archive语料(以纯文本tokens为基准,总~13万亿tokens),设计端到端系统:通过摘要抽取(NLP提取式 vs. LLM生成式)构建训练语料,使用LoRA continued pretraining训练PubLLM-Summary(基模型Llama 3 70B,提升出版领域召回率20%),并集成RAG(FAISS向量检索+全文分块)实现交互服务(如查询图书生命周期、知识推荐)。方案覆盖三种规模,优先合规(transformative use,仅公有/开源内容;摘要非复制性)。总框架采用Python生态(Hugging Face、LangChain),部署于AWS/GCP云。以2025年11月12日市场价估算(Gemma API $0.07/M tokens;H100 $3.90/GPU-hr;S3 $0.023/GB/月)。总体架构概述
import nltk
from nltk.tokenize import sent_tokenize
from collections import defaultdict
import networkx as nx # 可用
def textrank_summary(text, num_sentences=5):
sentences = sent_tokenize(text)
graph = nx.Graph()
for i, s1 in enumerate(sentences):
for j, s2 in enumerate(sentences):
if i != j:
sim = nltk.cosine_similarity([nltk.word_tokenize(s1)], [nltk.word_tokenize(s2)]) # 简化sim
graph.add_edge(i, j, weight=sim)
scores = nx.pagerank(graph)
top_sentences = sorted(scores, key=scores.get, reverse=True)[:num_sentences]
return ' '.join([sentences[i] for i in top_sentences])
summaries = [textrank_summary(t, 10) for t in texts] # 章节级,tokens ~0.65万亿
# BERT变体: from transformers import pipeline; summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from transformers import pipeline
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
chunks = [t[i:i+512] for t in texts for i in range(0, len(t), 512)] # 分块,tokens基准
vectorstore = FAISS.from_texts(chunks, embeddings)
llm = pipeline("text-generation", model="PubLLM-Summary")
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=vectorstore.as_retriever(search_kwargs={"k":5}))
response = qa_chain.run("大模型时代图书生命周期?")
存储:S3 Glacier(冷数据$0.023/GB/月,文本~52 TB)。
阶段5: 服务部署与迭代(所有规模,1周+持续)
前端:Streamlit API(查询输入→RAG输出+来源链接)。
代码(Streamlit app):python
import streamlit as st
from rag_pipeline import qa_chain # 上步
st.title("PubLLM出版知识服务")
query = st.text_input("查询:")
if query:
result = qa_chain.run(query)
st.write(result)
通用架构需鲁棒:A的emoji/缩写 vs. B的古文,清洗统一“语义基底”。年龄过滤后,语料可能不均(B历史数据稀疏)。
python<br>import jieba<br>from nltk import pos_tag # 模拟NER<br>def clean(text):<br> words = jieba.cut(text)<br> return ‘ ‘.join([w for w in words if w not in stopwords])<br>a_clean = [clean(blog) for blog in a_filtered[‘text’]]<br># 照片: view_image(url) → desc = ‘现代城市景观'<br>